В данной статье мы рассмотрим понятие пучка прямых. Представим уравнение пучка прямых. Приведем примеры нахождения уравнения пучка прямых, проходящих через данную точку.
![]() |
Пучком прямых называется множество прямых, проходящих через данную точку P. P называется центром пучка прямых. Две разные прямые в пучке прямых определяют центр пучка прямых.
Найдем уравнение пучка прямых, центром которого служит точка пересечения двух прямых (Рис.1):
A1x+B1y+C1=0 | (1) |
и
A2x+B2y+C2=0. | (2) |
Докажем следующую теорему.
Теорема 1. Пусть (1) и (2) уравнения двух прямых, пересекающихся в точке P, а λ1 и λ2 некоторые числа, которые одновременно не равны нулю. Тогда
λ1(A1x+B1y+C1) +λ2(A2x+B2y+C2)=0. | (3) |
является уравнением прямой, проходящей через точку P. Обратно, любая прямая, проходящая через точку P определяется уравнением (3), при некотороых числах λ1 и λ2.
Доказательство. Во первых покажем, что уравнение (3) является линейным уравнением (уравнением первого порядка), т.е. уравнением, при котором коэффициент при x или y не равен нулю.
Группируем коэффициенты при x и y:
(λ1A1+λ2A2)x+(λ1B1+λ2B2)y+(λ1C1+λ2C2)=0 | (4) |
Пусть
λ1A1+λ2A2=0, λ1B1+λ2B2=0. | (5) |
Тогда, например при λ1≠0 (по условию теоремы хотя бы один из чисел λ1 и λ2 не равен нулю), получим:
![]() | (6) |
т.е.
![]() | (7) |
Полученное равенство является условием параллельности прямых, определяемых уравнениями (1) и (2), что противоречит условию теоремы (эти прямые пересекаются и не совпадают). Таким образом хотя бы один из равенств (5) не выполняется, т.е. хотя бы один коэффициент при x и y в уравнении (4) не равен нулю. Отсюда следует, что уравнение (4) является линейным уравнением (уравнением первой степени) и является уравнением некоторой прямой. По условию теоремы, эта прямая проходит через точку P(x0, y0), которая является пересечением прямых (1) и (2), т.е. выполняются равенства:
![]() | (8) |
Из уравнениий (8) следует, что при любых λ1 и λ2:
λ1(A1x0+B1y0+C1)+λ2(A2x0+B2y0+C2)=0, |
т.е. уравнение (3) проходит через точку P.
Докажем вторую часть теоремы. Покажем, что любая прямая, проходящая через точку P определяется уравнением (3) при некоторых значениях λ1 и λ2.
Возьмем некоторую прямую проходящую через точки P и M'(x', y'). Покажем, что данная прямая определяется уравнением (3) при некоторых значениях λ1 и λ2, не равных одновременно нулю.
В первой части доказательства теоремы мы показали, что прямая, проходящая через точку P определяется уравнением (3). Теперь, если эта прямая проходит через еще одну точку M'(x', y'), то координаты этой точки должны удовлетворять уравнению (3):
λ1(A1x'0+B1y'0+C1)+λ2(A2x'0+B2y'0+C2)=0, | (9) |
Заметим, что выражения в скобках не могут быть равным нулю одновременно, т.к. это означало бы, что оба уравнения проходят через точки P и M'(x', y') и, следовательно, совпадают. Пусть, например, λ1(A1x'0+B1y'0+C1)≠0. Тогда задав λ2 произвольное число, отличное от нуля, решим (9) относительно λ1:
![]() |
Таким образом, при указанных коэффициентов λ1 и λ2, прямая (3) проходит через точки P и M'(x', y'). Если же λ1(A2x'0+B2y'0+C2)≠0, то аналогичным образом вычисляются коэффициенты λ1 и λ2.
Теорема доказана.
Пример 1. Пучок прямых задан уравнениями:
2x+3y−1=0 | (10) |
и
x−4y+2=0. | (11) |
Найти уравнение прямой из пучка прямых, проходящий через точку M(−3, 1).
Решение. Уравнение пучка прямых, заданных прямыми (10) и (11) имеет следующий вид:
λ1(2x+3y−1)+λ2(x−4y+2)=0. | (12) |
Подставим координаты точки M в уравннение (12):
λ1(2·(−3)+3·1−1)+λ2(−3−4·1+2)=0. | (13) |
Упростим (13):
λ1(−4))+λ2(−5)=0. |
Задав, например, λ2=4, получим λ1=−5.
Положим значения λ1 и λ2 в (12):
−5(2x+3y−1)+4(x−4y+2)=0. | (14) |
Упростив уравнение (14), получим уравнение из пучка прямых проходящих через точку M(−3, 1):
−6x−31y+13=0. |
Ответ:
−6x−31y+13=0. |
Пример 2. Построить уравнение пучка прямых с центром M(4,1):
Решение. Возьмем две различные точки, не совпадающие с точкой M: M1(2,1), M2(−1,3). Построим уравнение, проходящие через точки M и M1. Нормальный вектор n1 этой прямой должен быть ортогональным вектору , равному разностьям координат точек M и M1:
={2−4, 1−1}={−2,0}. Т.е. можно взять n1={0,1}. Тогда уравнение прямой с нормальным вектором n1, проходяще через точку M имеет следующий вид:
0(x−4)+1(y−1)=0 |
или
y−1=0. | (15) |
Построим уравнение проходящее через точки M и M2. ={−1−4, 3−1}={−5,2}. Возмем в качестве нормального вектора второго уравнения n2={2, 5}. Тогда второе уравнение имеет слеждующий вид:
2(x−4)+5(y−1)=0 |
или
2x+5y−13=0. | (16) |
Из уравнений (15) и (16) можно записать уравнение пучка прямых с центром M(4,1):
λ1(y−1)+λ2(2x+5y−13)=0. |
Ответ:
λ1(y−1)+λ2(2x+5y−13)=0. |
Заметим, что взяв другие точки M1 и M2, мы получим уравнение того же пучка прямых, но с другими двумя прямыми.