-->
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить".
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L
. | (1) |
и плоскость α1:
. | (2) |
Пусть плоскость α1 не перпендинулярно прямой L.
Задача заключается в построении уравнения плоскости α, проходящей через прямую L перпендикулярно плоскости α1 (Рис.1).
Решение. Уравнение прямой L проходит через точку M0(x0, y0, z0) и имеет направляющий вектор q={m, p, l}. Уравнение плоскости α1 и имеет нормальный вектор n1={A1, B1, C1}.
Запишем уравнение искомой плоскости α:
Ax+By+Cz+D=0. | (3) |
Искомая плоскость α проходит через прямую L, следовательно она проходит через точку M0(x0, y0, z0). Тогда справедливо следующее равенство:
Ax0+By0+Cz0+D=0. | (4) |
и поскольку прямая L принадлежит этой плоскости, то нормальный вектор n={A, B, C} и направляющий вектор q={m, p, l} ортогональны:
Am+Bp+Cl=0. | (5) |
Для того, чтобы плоскость α была перпендикулярна плоскости α1, нормальные векторы этих плоскостей должны быть ортогональными, т.е. скалярное произведение этих векторов должно быть равным нулю:
AA1+BB1+CC1=0 | (6) |
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:
(7) |
Решив однородную систему линейных уравнений (7) найдем частное решение. (Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L перпендикулярно плоскости α1.
Пример 1.Найти уравнение плоскости α, проходящей через прямую L:
(8) |
перпендикулярно плоскости α1 :
(9) |
Решение. Прямая L проходит через точку M0(x0, y0, z0)=M0(−4, 1, 2) и имеет направляющий вектор
q={m, p, l}={7, 4, 1} |
Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 5}.
Уравнение искомой плоскости α можно записать следующей формулой:
Ax+By+Cz+D=0, |
где n={A, B, C} нормальный вектор плоскости.
Поскольку плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−4, 1, 2), тогда уравнение плоскости должна удовлетворять условию:
Ax0+By0+Cz0+D=0 | (10) |
а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:
Am+Bp+Cl=0. | (11) |
Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:
AA1+BB1+CC1=0 | (12) |
Подставим значения x0, y0, z0, m, p, l, A1, B1, C1, в (10),(11) и (12):
(13) |
(14) |
(15) |
Представим эти уравнения в матричном виде:
(16) |
Решим систему линейных уравнений (16) отностительно A, B, C, D:
(17) |
Таким образом искомая плоскость имеет нормальный вектор n={A, B, C}={9/43,−17/43,5/43}. Тогда подставляя в уравнение плоскости
Ax+By+Cz+D=0 | (18) |
значения A, B, C, D, получим:
Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:
(19) |
Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (19).
Пример 2. Найти уравнение плоскости α, проходящей через прямую L:
(20) |
перпендикулярно плоскости α1 :
(21) |
Решение. Прямая L проходит через точку M0(x0, y0, z0)=M0(−3, 1, 5) и имеет направляющий вектор
q={m, p, l}={2, 4, −1} |
Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={−1, 1, 2}.
Уравнение искомой плоскости α можно записать следующей формулой:
Ax+By+Cz+D=0, |
где n={A, B, C} нормальный вектор плоскости.
Так как плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−3, 1, 5), тогда уравнение плоскости должна удовлетворять условию:
Ax0+By0+Cz0+D=0 | (22) |
а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:
Am+Bp+Cl=0. | (23) |
Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:
AA1+BB1+CC1=0 | (24) |
Подставим значения x0, y0, z0, m, p, l, A1, B1, C1, в (22),(23) и (24):
(25) |
(26) |
(27) |
Представим эти уравнения в матричном виде:
(28) |
Решим систему линейных уравнений (28) отностительно A, B, C, D:
(29) |
Таким образом искомая плоскость имеет нормальный вектор n={A, B, C}={3/2,−1/2,1}. Тогда подставляя в уравнение плоскости
Ax+By+Cz+D=0 | (30) |
значения A, B, C, D, получим:
Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:
(31) |
Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (31).