-->

Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости онлайн

С помощю этого онлайн калькулятора можно найти уравнение плоскости, проходящей через заданную точку и параллельной данной плоскости. Дается подробное решение с пояснениями. Для нахождения уравнения плоскости, введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку "Решить".

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

 

Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости − теория, примеры и решения

Пусть задана точка M0(x0, y0, z0) и уравнение плоскости

Ax+By+Cz+D=0 (1)

Наша задача найти уравнение плоскости, проходящей через точку M0 и параллельной плоскости (1)(Рис.1).

уравнение параллельной плоскости к заданной плоскости

Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (1) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (1). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (1):

(2)

Решим (2) относительно D:

D=−(Ax0+By0+Cz0) (3)

Подставляя значение D из (3) в (1), получим:

Ax+By+Cz−(Ax0+By0+Cz0)=0 (4)

Уравнение (4) можно представить также в следующем виде:

A(xx0)+B(yy0)+C(zz0)=0 (5)

Уравнение (5) является уравнением плоскости, проходящей через точку M0(x0, y0, z0) и параллельной плоскости (1).

Пример 1.

Найти уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости :

(6)

Решение.

Запишем коэффициенты нормального вектора плоскости (6):

(7)

Подставляя координаты точки M0 и координаты нормального вектора в (3), получим:

(8)

Подставляя значения A, B, C, D в уравнение плоскости (1), получим:

Уравнение плоскости можно представить в более упрощенном виде, умножив на 4:

Ответ.

Уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости (6) имеет следующий вид: