-->
С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку "Решить". Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями
, | (1.1) |
и
, | (1.2) |
где q1=(m1, p1) направляющий вектор прямой L1, а q2=(m2, p2) направляющий вектор прямой L2.
Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).
, |
Из определения скалярного произведения:
, | (1.3) |
где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.
Из выражения (1.3) получим:
. | (1.4) |
Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.
Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.
Пример 1. Определить угол между прямыми
. | (1.5) |
и
. | (1.6) |
Решение. Прямая (1.5) имеет направляющий вектор q1=(m1, p1)=(3, 4), а прямая (1.6) − q2=(m2, p2)=(− 3, 1). Для определения угла между прямыми (1.5) и (1.6) подставим значения m1, p1, m2, p2 в (1.4):
. |
Упростим и решим:
. |
Найдем угол φ
Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:
Ответ.
Угол между прямыми равен:
Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:
. | (1.7) |
Сделаем преобразования с выражением (1.7):
, |
, |
, |
, |
, |
. | (1.8) |
Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:
. | (1.9) |
Пример 2. Определить, параллельны ли прямые
. | (1.10) |
и
. | (1.11) |
Решение. Прямая (1.10) имеет направляющий вектор q1=(m1, p1)=(3, 3), а прямая (1.11) − q2=(m2, p2)=(−2, −2). Тогда
, . |
Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.
Ответ. Прямые (1.10) и (1.11) параллельны.
Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:
. | (1.12) |
Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие
. | (1.13) |
Пример 3. Определить, перпендикулярны ли прямые
(1.14) |
и
. | (1.15) |
Решение. Прямая (1.14) имеет направляющий вектор q1=(m1, p1)=(3, 1), а прямая (1.15) − q2=(m2, p2)=(−2, 6). Тогда
. | (16) |
Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.
Ответ. Прямые (1.14) и (1.15) перпендикулярны.
Пусть две прямые L1 и L2 заданы общими уравнениями
(1.17) |
и
. | (1.18) |
Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).
. |
Из определения скалярного произведения двух векторов, имеем:
. | (1.19) |
где |n1| и |n2| модули нормальных векторов n1 и n2 соответственно, φ -угол между векторами n1 и n2.
Из уравнения (19) получим
. | (1.20) |
Пример 4. Найти угол между прямыми
5x1−2x2+3=0 | (1.21) |
и
x1+3x2−1=0. | (1.22) |
Решение. Прямая (1.21) имеет нормальный вектор n1=(A1, B1)=(5, −2), а прямая (1.22) − n2=(A2, B2)=(1, 3). Задача определения угла между прямыми L1 и L2 сводится к определению угла между векторами n1 и n2. Из определения скалярного произведения векторов имеем: (n1,n2)=|n1||n2|cosφ. Тогда
(23) |
Подставляя значения A1, B1, A2, B2 в (1.23), получим:
Упростим и решим:
Найдем угол φ:
Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:
Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:
. | (1.24) |
С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:
. | (1.25) |
Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).
Пример 5. Определить, параллельны ли прямые
4x+2y+2=0 | (1.26) |
и
2x+y−2=0. | (1.27) |
Решение. Прямая (1.26) имеет нормальный вектор n1=(A1, B1)=(4, 2), а прямая (1.27) − n2=(A2, B2)=(2, 1). Тогда подставляя значения A1, B1, A2, B2 в (1.24), получим
4·1≡2·2. |
Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.
Ответ. Прямые (1.26) и (1.27) параллельны.
Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда
A1A2+B1B2=0. | (1.28) |
Таким образом условие перпендикулярности прямых определяется равенством (1.28).
Пример 6. Определить, перпендикулярны ли прямые
4x−1y+2=0 | (1.29) |
и
2x+8y−14=0. | (1.30) |
Решение. Прямая (1.29) имеет нормальный вектор n1=(A1, B1)=(4, −1), а прямая (1.30) − n2=(A2, B2)=(2, 8). Тогда подставляя значения A1, B1, A2, B2 в (28), получим
4·2-1·8≡0. |
Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.
Ответ. Прямые (1.29) и (1.30) перпендикулярны.
Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями
, | (2.1) |
и
, | (2.2) |
где q1=(m1, p1, l1) направляющий вектор прямой L1, а q2=(m2, p2, l2) направляющий вектор прямой L2.
Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .
Из определения скалярного произведения:
, | (2.3) |
где |q1| и |q2| модули направляющих векторов q1 и q2 соответственно, φ -угол между векторами q1 и q2.
Из выражения (2.3) получим:
. | (2.4) |
Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.
Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.
Пример 1. Определить угол между прямыми
. | (2.5) |
и
(2.6) |
Решение. Прямая (2.5) имеет направляющий вектор q1=(m1, p1, l1)=(1, 1, 3), а прямая (2.6) − q2=(m2, p2, l2)=(− 3, 1, 2). Для определения угла между прямыми (2.5) и (2.6) подставим значения m1, p1, l1, m2, p2, l2 в (2.4):
. |
. |
Упростим и решим:
. |
Найдем угол φ
Ответ.
Угол между прямыми равен:
Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть
m1=αm2, p1=αp2, l1=αl2 | (2.7) |
где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.
Условие параллельности прямых можно представить и так:
(2.8) |
Отметим, что любую пропорцию нужно понимать как равенство ad=bc.
Пример 2. Определить, параллельны ли прямые
. | (2.9) |
и
. | (2.10) |
Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 4), а прямая (2.10) − q2=(m2, p2, l2)=(6, 4, 8). Тогда
, , . |
Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.
Ответ. Прямые (2,9) и (2,10) параллельны.
Пример 3. Определить, параллельны ли прямые
. | (2.11) |
и
. | (2.12) |
Решение. Прямая (2.9) имеет направляющий вектор q1=(m1, p1, l1)=(1, 2, 0), а прямая (2.10) − q2=(m2, p2, l2)=(2, 4, 0). Подставляя значения m1, p1, l1, m2, p2, l2 в (2.8), получим
. | (2.13) |
Выражение (2.13) нужно понимать так:
, , . | (2.14) |
Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.
Ответ. Прямые (2.11) и (2.12) параллельны.
Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:
. | (2.15) |
Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие
. | (2.16) |
Пример 3. Определить, перпендикулярны ли прямые
(2.17) |
и
. | (2.18) |
Решение. Прямая (2.16) имеет направляющий вектор q1=(m1, p1, l1)=(3, 2, 1), а прямая (2.17) − q2=(m2, p2, l2)=(4, −6, 0). Тогда
. | (2.19) |
Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.
Ответ. Прямые (2.17) и (2.18) перпендикулярны.