Угол между плоскостями. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти угол между плоскостями. Дается подробное решение с пояснениями. Для вычисления угла между плоскостями, введите элементы уравнения плоскостей в ячейки и нажимайте на кнопку "Решить".

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

 

Угол между плоскостями − теория

Пусть заданы две плоскости α и β общими уравнениями

A1x+B1y+C1z+D1=0, (1)
A2x+B2y+C2z+D2=0 (2)

Угол между этими плоскостями сводится к определению угла φ между нормальными векторами n1=(A1, B1, C1) и n2=(A2, B2, C2) этих плоскостей.

Из определения скалярного произведения, имеем

. (3)

Тогда из (3) можно найти косинус угла между нормальными векторами n1 и n2:

. (4)

Учитывая, что (n1, n2)=A1A2+B1B2+C1C2 и длины векторов |n1|= и |n2|=выражение (4) можно записать так:

. (5)

Таким образом косинус угла между нормальными векторами и, следовательно, косинус угла между плоскостями α и β определяется формулой (5). Далее можно найти угол φ с помощью функции arccos.

Отметим, что пересекающиеся плоскости образую два угла. Другой угол можно найти так: φ'=180−φ.

Угол между плоскостями − примеры и решения

Пример 1. Найти угол между плоскостями

(6)

и

(7)

Решение.

Нормальный вектор плоскости (6) равен n1=(A1, B1, C1)=(1, 2, -6), нормальный вектор плоскости (7) равен n2=(A2, B2, C2)=(-2, 6, 5).

Подставим значения A1, B1, C1, A2, B2, C2 в (5):

(8)

Упростим и решим:

Найдем угол φ:

Данный угол больше 90°. Найдем минимальный угол между плоскостями. Для этого вычтем этот угол из 180:

Пример 2. Найти угол между плоскостями

(9)

и

(10)

Решение.

Нормальный вектор плоскости (9) равен n1=(A1, B1, C1)=(1, 2, 8), нормальный вектор плоскости (10) равен n2=(A2, B2, C2)=(2, 4, 16).

Подставим значения A1, B1, C1, A2, B2, C2 в (5):

Упростим и решим:

Найдем угол φ:

.

Угол между этими плоскостями равен нулю. Следовательно эти плоскости параллельны.