-->

Синус и косинус. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти синусы и косинусы угла, представленных как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Синус и косинус − теория, примеры и решения

Пусть задана прямоугольная система координат xOy и пусть на ней нарисована окружность радиусом 1 и с центром в начале координат. Рассмотрим единичный вектор лежащий на оси Ox. Положительным направлением поворота вектора относительно центра координат O принята считать поворот против часовой стрелки, а отрицательным направлнением − по часовой стрелке. Пусть некоторый вектор, совпадающий с вектором , совершивший поворот в положительном направлении совпадает с вектором (Рис.1).

Точку B назовем точкой, соответствующей углу α. Рассмотрим координаты x, y точки B. Абсцис x точки B называют косинусом угла α и обозначают cosα, а ординат y точки B называют синусом угла α и обозначают sinα. Таким образом

x=cosα, (1)
y=sinα. (2)

Так как мы рассматриваем окружность с радиусом R=1, то

−1≤ cosα ≤1,
−1≤ sinα ≤1.

а любая точка на кружности удовлетворяет следующему равенству:

x2+y2=1. (3)

Подставляя (1) и (2) в (3), получим:

cos2α+sin2α=1. (4)

На рисунках Рис.2 и Рис.3 представлены некоторые углы единичной окружности в радианах и в градусах. Как преобразовать градусы в радианы и наоборот посмотрите на странице радианы и градусы онлайн.

Как видно из рисунков, оси OX и OY разделяют плоскость на 4 части. Эти части принято пронуменровать римскими числами I, II, III, IV. Каждая часть называется четвертью. На рисунке Рис.2 в каждой четверти окружность разделена на две части, а в Рис.3 − на три.

Пример 1. Найти синус и косинус угла, равного 45°(или радиан)( Рис.4).

Имеем прямоугольный треугольник OxB. Так как угол BOx=45°, то угол OBx=45°. Следовательно треугольник OBx равнобедренный, т.е.

x=y (5)

Подставляя (5) в (3), получим:

То есть (учитывая (1) и (2))

. (6)

В радианных мерах (6) примет следующий вид:

. (7)

Пример 2. Найти синус и косинус угла, равного 60°(или радиан)( Рис.5).

Имеем прямоугольный треугольник OxB. Так как угол BOx=60°, то угол OBx=30°. Как известно из геометрии, катет, напротив угла 30° равен половине гипотенузы. Т.е.

(8)

Подставляя (8) в (3), получим:

В первой четверти x>0, y>0. Тогда, учитывая (1) и (2), решением будет:

или

Пример 3. Найти синус и косинус угла, равного 120°(или радиан)( Рис.6).

Имеем прямоугольный треугольник OxB. Так как угол BOx=120°, то ∠yOB=∠OBx=30°. Как известно из геометрии, катет, напротив угла 30° равен половине гипотенузы. Т.е.

(9)

Подставляя (9) в (3), получим:

Во второй четверти x<0, y>0. Тогда, учитывая (1) и (2), решением будет:

или

С помощью вышеизложенных соображений можно построить таблицу синусов и косинусов некоторых углов.

Таблица 1.

Рассмотрим свойства синуса и косинуса.

Свойство 1. Для любого числа α справедливы равенства:

(10)
(11)

Доказательство. Пусть числу α соответствует точка P на окружности (Рис. 7). Тогда числу −α соответствует точка Q, симметричная точке P относительно оси абсцисс. Эти точки имеют одну и ту же абсциссу, следовательно . Такие точки имеют равные по модулю, но противоположные по знаку ординаты. Следовательно .

Свойство 2. Для любого числа α выполнены равенства (в радианах):

(12)
(13)

или (в градусах)

(14)
(15)

где k∈Z (k любое целое число).

Поскольку числам α и α+2πk в радианах соответствует одна и та же точка на числовой окружности, то справедливы равенства (12) и (13). Так как числам α и α+360k в градусах соответствует одна и та же точка на числовой окружности, то выполнены равенства (14) и (15).

Свойство 3. Для любого значения α выполнены равенства (в радианах):

(16)
(17)

или (в градусах):

(18)
(19)

Например (в радианах):

или (в градусах):

Доказательство. Пусть числу α соответствует точка P на окружности. Тогда числу α+π (или α+180°) соответствует точка Q, симметричной точке P относительно начала координат (Рис. 8). Абсциссы этих точек равны по модулю но имеют противоположные знаки. Ординаты этих точек равны по модулю и имеют противоположные знаки. А это значит, что выполнены равенства (16),(17),(18),(19).

График функции синус (y=sin x)

Для построения графика функции синус, поставим в соответствие любому числу α, ординату соответствующей точки на единичной окружности (Рис.9).

Пусть точка M движется по окружности в положительном направлении (против часовой стрелки) начиная с точки A. вектор радиус точки M движется по окружности, начиная от точки A.

Вектор радиус точки M с осью OX имеет угол α. Увеличивая этот угол от нуля до π/2 ордината точки M увеличивается от 0 до 1. Далее, увеличивая этот угол от π/2 до π, ордината точки M уменьшается на от 1 до 0. Построим график функции синус на отрезке [0,π]. Так как привычнее запись функции в виде y=sin x, то вместо sin α мы будем использовать sin x, а y− это значение функции соответствующей точке x.

В декартовой прямоугольной системе координат, на оси OX отметим точки (можно взять π≈3 и тогда этим точкам будут соответствовать числа 0, 0.5, 1, 1.5, 2, 2.5, 3). Далее, используя таблицу 1, запишем соответствующие значения y.

Построим график:

Равенство (10) показывает, что функция синус симметрична относительно начала координат (т.е. нечетна). Тогда добавив построенной линии, линию, симметричную относительно начала коордиинат, получим:

Равентство (12)((14)) показывает, что синус периодичная функция с периодом ( 360°). Это означает, что функция в диапазоне [−π;π] повторяется начиная с π направо и с −π влево:

Область определения функции синус (−∞;+∞). Область значений: [−1;1].

График функции косинус (y=cos x)

Для построения графика функции косинус, поставим в соответствие любому числу α, абсциссу соответствующей точки на единичной окружности (Рис.13).

Пусть точка M движется по окружности в положительном направлении (против часовой стрелки) начиная с точки A.

Вектор радиус точки M с осью OX имеет угол α. Увеличивая этот угол от нуля до π/2 абсцисс точки M уменьшается от 1 до 0. Далее, увеличивая этот угол от π/2 до π, абсцисс точки M увеличивается от 0 до 1. Построим график функции косинус на отрезке [0,π]. Так как привычнее запись функции в виде y=cos x, то вместо cos α мы будем использовать cos x, а y− это значение функции соответствующей точке x.

В декартовой прямоугольной системе координат, на оси OX отметим точки (можно взять π≈3 и тогда этим точкам будут соответствовать числа 0, 0.5, 1, 1.5, 2, 2.5, 3). Далее, используя таблицу 1, запишем соответствующие значения y.

Построим график:

Равенство (11) показывает, что функция синус симметрична относительно оси ординат (т.е. четна). Тогда добавив построенной линии, линию, симметричную относительно оси ординат, получим:

Равентство (13)((15)) показывает, что косинус периодичная функция с периодом ( 360°). Это означает, что функция в диапазоне [−π;π] повторяется начиная с π направо и с −π влево:

Область определения функции косинус (−∞;+∞). Область значений: [−1;1].