С помощю этого онлайн калькулятора можно найти тангенсы и котангенсы угла, представленных как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Определение 1. Число, равное отношению
называется тангенсом угла α и обозначается
. | (1) |
Определение 2. Число, равное отношению
называется котангенсом угла α и обозначается
. | (2) |
Подробнее о синусах и косинусах посмотрите на странице Синус и косинус. Онлайн калькулятор.
Свойство A1. Область определения функции тангенс −это все действительные числа α, удовлетворяющие выражению
, | (3) |
где Z множество целых чисел.
Действительно. Из равенства (1) следует, что cos α должен быть отличным от нуля. А это в свою очередь показывает справедливость равенства (3).
Свойство A2. Область определения функции котангенс −это все действительные числа α, удовлетворяющие выражению
, | (4) |
где Z множество целых чисел.
Действительно. Из равенства (2) следует, что sin α должен быть отличным от нуля. А это в свою очередь показывает справедливость равенства (4).
Свойство 1. tg α и сtg α нечетные функции, т.е. для любого допустимого значения α справедливы равенства
, | (5) |
. | (6) |
Доказательство. Воспользуемся равенствами и (cм. на странице Синус и косинус. Онлайн калькулятор). Тогда имеем:
. |
. |
Свойство 2. tg α и сtg α периодичные функции с основным периодом π (180°), т.е. для любого допустимого значения α справедливы равенства
, | (7) |
(8) |
или в градусах:
, | (9) |
. | (10) |
Доказательство. Воспользуемся тем, что или (cм. на странице Синус и косинус. Онлайн калькулятор):
, |
или в градусах:
, |
И вообще
, | (11) |
(12) |
или в градусах:
, | (13) |
. | (14) |
Использем таблицы синусов и косинусов, и построим таблицу тангенсов и котангенсов некоторых углов, учитывая уравнение (1):
Пример 1. Найти тангенс и котангенс угла равного 420°(или радиан).
Воспользуемся уравнениями (11)− (14):
или :
или :
Пример 2. Найти тангенс и котангенс угла равного -225°(или радиан).
Воспользуемся уравнениями (11)− (14):
или :
или :
Как мы уже знаем из определения синуса и косинуса sin α=y2, cos α=x2 (Рис.1). Покажем, что tg α=AN, ctg α=KP
Построим каноническое уравнение прямой, проходящей через точки и (см. статью на странице Каноническое уравнение прямой на плоскости):
. |
Тогда учитывая, что , имеем:
или
(15) |
Поскольку , , тогда
При x=1 имеем y=tg α. Т.е. tg α − это ординат точки пересечения прямых ON и NA
Выразим в (15) x через y:
Подставляя , , получим:
Взяв y=1, получим x=ctg α. Таким образом ctg α − это абсцисс точки пересечения прямых ON и KP.
Так как для функциий привычнее запись y=f(x), то вместо записей u=tg α и u=сtg α мы будем использовать записи y=tg x и y=сtg x.
Построим график функции тангенс на интервале . Выберем контрольные точки:
Отметим эти точки на координатной плоскости XOY и проведем через них плавную кривую (Рис. 2)
Учитывая свойство 1 построим симметричную к этой кривой относительно начала координат (Рис.3)
Функция тангенс периодичная (свойство 2) с основным периодом π. Тогда на графике функции тангенс, ветвь на рисунке Рис.2 повторяется бесконечное число раз от -∞ до ∞:
В точках функция имеет разрыв. Каждая прямая вида является вертикальной асимптотой графика функции.
Построим график функции котангенс на интервале [0; π). Выберем контрольные точки:
Взяв π≈3, высислим значения x, отметим эти точки на координатной плоскости XOY и проведем через них плавную кривую (Рис. 5)
Функция котангенс периодичная (свойство 2) с основным периодом π. Тогда на графике функции котангенс, ветвь на рисунке Рис.5 повторяется бесконечное число раз от -∞ до ∞:
В точках функция имеет разрыв. Каждая прямая вида является вертикальной асимптотой графика функции котангенс.