-->

Метод Крамера онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Крамера. Дается подробное решение. Для вычисления выбирайте количество переменных. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить."

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

 

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

(1)

Заменим данную систему (1) эквивалентным ей матричным уравнением

Ax=b (2)

где A -основная матрица системы:

(3)

а x и b − векторы столбцы:

 

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A-1. Тогда умножая тождество (2) слева на обратную матрицу A-1, получим:

A-1Ax=A-1b.

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A-1A=E), получим

x=A-1b. (4)

Обратная матрица имеет следующий вид:

(5)

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

Из (4) и (5) имеем:

 

или

 

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

 

 

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x11/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, ..., n матрицы A.

Примеры решения СЛУ методом Крамера

Пример 1.Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

.

Вычислим определитель основной матрицы A:

.

Заменим столбец 1 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A1:

.

Заменим столбец 2 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A2:

.

Заменим столбец 3 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A3:

.

Решение системы линейных уравнений вычисляется так:

Ответ:

Пример 2. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

Найдем определитель матрицы A. Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3,4 со строкой 1, умноженной на -1/4,-3/4,-2/4 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого меняем местами строки 2 и 4. При этом меняется знак определителя на "−".

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строки 3,4 со строкой 2, умноженной на -26/76,2/76 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 3. Для этого меняем местами строки 3 и 4. При этом меняется знак определителя на "+".

Исключим элементы 3-го столбца матрицы ниже главной диагонали. Для этого сложим строку 4 со строкой 3, умноженной на -817/1159:

Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали:

Заменим столбец 1 матрицы A на вектор столбец b:

Для вычисления определителя матрицы A1, приведем матрицу к верхнему треугольному виду, аналогично вышеизложенной процедуре. Получим следующую матрицу:

Определитель матрицы равен произведению всех элементов главной диагонали:

Заменяем столбец 2 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 3 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 4 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Решение системы линейных уравнений вычисляется так:

Ответ:

,,,.